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Abstract

Deep Learning (DL) provided powerful tools for vari-
ous visual information analysis and retrieval tasks, outper-
forming previously used methods. However, despite the po-
tential of such approaches for various tasks, applying them
in video stream applications, such as media monitoring or
surveillance, where a large number of streams should be
processed in parallel, is not trivial and comes with several
challenges. This paper aims to provide a brief overview of
the current state-of-the-art in DL tools that can be used for
deep video stream information analysis and retrieval. Apart
from a review of the current literature, we also include ex-
perimental results discussing deployment challenges, rang-
ing from speed to energy consumption, demonstrating the
capabilities of readily available commodity hardware in
processing video streams for selected DL models.

1. Introduction

Recent advances in Deep Learning (DL) led to a wide
portfolio of tools for various powerful visual informa-
tion analysis tasks, outperforming traditionally used meth-
ods [18]. These range from human detection [17] and
recognition [52], as well as object detection approaches [23]
to sophisticated emotion [26] and activity recognition ap-
proaches [53]. At the same time, powerful DL-based repre-
sentation learning methods significantly increased the ac-
curacy of information retrieval [27], while also allowed
for accurately performing challenging tasks, such as re-
identification [60]. However, despite the great potential of
such approaches, applying them in real-world scenarios of-
ten remains especially challenging. DL methods typically
require a different training and deployment pipeline com-
pared to traditional computer vision approaches, while at

the same time they often critically rely on the availability
of hardware DL accelerators. Indeed, modern DL methods
are computationally intensive both to train and deploy re-
quiring a significant amount of equipment and energy for
deployment, which can slow down their adoption [40].

These limitations are even more critical in video stream
applications [38], such as media analysis and surveillance.
In such applications, a large number of parallel streams
should be processed in almost real-time in order to extract,
consolidate and then provide the necessary information to
the end-users. The amount of data that can be gathered in
such applications is enormous. A media monitoring appli-
cation might need to cover tens or hundreds of channels,
while CCTV applications in large premises, such as malls,
might also scale to hundreds of cameras that need to be si-
multaneously monitored.

This paper aims to provide a brief overview of the cur-
rent state-of-the-art in DL tools that can be used for deep
video stream information analysis and retrieval, focusing
especially on challenges that often arise when processing a
large number of video streams. To this end, apart from a re-
view of the current literature, we also include experimental
results where we demonstrate the capabilities of commodity
hardware in processing video streams for selected DL mod-
els. The provided analysis goes beyond traditional metrics,
such as memory and speed (e.g., frames-per-second, FPS),
by also including energy consumption metrics in order to
also take into account this important aspect which can be a
limiting factor in many large-scale deployments. The code
used for experimental evaluation is available at https://
github.com/cidl-auth/stream-benchmark.

The rest of the paper is structured as follows. Section 2
provides an overview and critical discussion of currently
available DL tools for visual information analysis and re-
trieval that concern video streams. Then, in Section 3 we
provide an experimental analysis of the capabilities of mod-



ern commodity hardware in processing video streams, dis-
cussing potential deployment challenges. Finally, Section 4
concludes this paper.

2. Deep Video Stream Information Analysis
and Retrieval

2.1 Deep Semantic-based Media Analysis

Several DL tools for media analysis have been developed
in recent years, overcoming most of the limitations of pre-
viously used methods, ranging from generic object detec-
tion approaches and segmentation methods [55, 20] to spe-
cialized human-centric methods for extracting various be-
havioral analytics [53]. Indeed, a common task that arises
in media monitoring applications is object and logo detec-
tion. The former can be easily tackled with existing object
detection approaches [23, 34]. Building upon these meth-
ods, logo detection and recognition methods have been also
developed [5, 39, 21]. Such approaches enable advertis-
ers to monitor the effectiveness of their campaigns in vari-
ous media. These approaches are typically highly accurate,
yet they require a tedious manual annotation and retraining
each time a new object category and/or logo much be added
for detection. This can significantly hinder their application
in production systems since it significantly increases the de-
ployment cost. Indeed, as we further explain in Section 2.2,
employing a slightly different retrieval-based pipeline allow
us to effectively overcome these limitations.

It is also worth noting that in some cases we are not in-
terested in localizing an object, but just answering whether
it is present in a given frame. Indeed, in many media moni-
toring applications, we are interested in measuring the time
a concept appears in a given video stream, instead of pre-
cisely localizing it inside each frame. A typical example
of such an application is measuring total product placement
time. In such cases, we can apply concept-based recogni-
tion approaches [25, 19, 45]. These approaches allow for
extracting such metadata faster and - in some cases - with
higher precision since they are capable of processing higher
dimensional inputs [48].

Apart from object detection, powerful person and face
detection methods have been developed, allowing for de-
tecting humans with high accuracy [11, 17, 23]. These
methods, despite being significantly faster than previous
proposal-based detection methods, can still require a signif-
icant amount of resources. At the same time, it is worth not-
ing that these approaches, despite being very accurate, usu-
ally work on relatively low-resolution inputs. As a result,
when there is a need for detecting very small faces, special-
ized methods are typically employed, e.g., using multi-scale
detection [44].

Moreover, DL also provided powerful tools for face
recognition, which can effectively scale into datasets with
millions of people [52]. However, it should be noted that
all of these methods expect a cropped version of a face to
be recognized. As a result, face detection is usually a pre-
processing step for every face recognition application, in-
creasing the complexity of DL pipelines for face recogni-
tion. Face alignment steps can be also employed, which
can further improve the accuracy. Such steps have been in-
corporated into recent face detection pipelines, such as [8],
further accelerating the resulting pipeline. Furthermore,
closely related to face recognition approaches are methods
that focus on re-identifying persons that appear in different
frames, e.g., in a mall that has different cameras. Several
powerful DL formulations for person re-identification have
also been developed [60]. It is worth noting that these ap-
proaches typically do not only focus on facial features but
take into account the whole appearance of a person, e.g,.
clothes, haircut, etc. Therefore, most of these approaches
focus on re-identifying a subject within very small time
horizons.

Finally, several other DL models for various visual an-
alytics have been proposed. These range from pose esti-
mation [42] and emotion recognition approaches [26] to ac-
tivity recognition, both from still images and video [53].
All these tools, provide unique opportunities for automated
extraction of analytics regarding the behavior of humans in
various settings. At the same time, these capabilities have
also raised significant issues regarding the way such data
are processed. However, it is worth noting that DL for edge
deployment can often allow such analytics to be extracted
in an anonymized fashion [3], without transferring or stor-
ing any data to the cloud, fully ensuring the privacy of the
end-users.

2.2 Deep Information Retrieval

Employing retrieval-based approaches is also especially
useful in various video stream analysis applications, rang-
ing from retrieving similar videos or images from large-
scale databases [2] to efficiently handling few-shot learn-
ing tasks [43]. Indeed, following the successful application
of DL for tackling a wide spectrum of visual recognition
problems, a plethora of recent works also resort to DL to
tackle information retrieval, and especially image retrieval,
accomplishing superior performance over previous shallow
approaches [7, 10, 29]. Generally, deep image retrieval
methods fall into two broad categories: unsupervised meth-
ods that employ reconstruction-based objectives [16], and
supervised ones, that, typically accomplish superior perfor-
mance over the former ones, by learning discriminative rep-
resentations through supervised objectives [37, 50]. How-
ever, employing highly discriminative objectives can often



lead to overfitting the training domain, failing to general-
ize to unseen, yet related domains. To this end, methods
that can exploit the geometric structure of the data in an
unsupervised fashion, as well as the user’s feedback using
relevance feedback have been proposed [47, 46].

Such information retrieval approaches can enable to per-
form various video stream information analysis tasks very
effectively, especially when the needs of the end-users can
quickly shift. For example, consider the task of logo de-
tection where we can decouple the detection and recogni-
tion tasks. In this case, we can first train a generic object
logo detector to detect any entity on a frame that can po-
tentially look like a logo, which is a task that can be eas-
ily handled given the existence of large-scale datasets that
can be used to develop detectors that can detect even un-
seen logos [51]. Then, we can tackle the problem of logo
recognition as a separate step, as in [4], either by employ-
ing few-shot learning or any information retrieval approach.
Such setup enables for easily augmenting the logos that can
be recognized by the system just by adding a few of them
into the logo database without the need for re-training the
whole DL detector, providing an effective solution for con-
tinual learning [24] with minimal effort for the end-user.

2.3 Optimization DL models for large-scale de-
ployment

Despite the achievements of DL in the aforementioned
areas, the computational and energy requirements of them
can be often a limiting factor when deploying them in large-
scale applications [40], as also mentioned in Section 1. This
led to the development of a wide range of methods for
developing lightweight, yet almost equally effective mod-
els. Some methods focused on reducing the complexity
of operations, i.e., both memory and computations, by re-
ducing the number of bits used to store each parameter
of the model, as well as their activations. Such methods
are called quantization methods and have flourished in re-
cent years [6, 9, 22], since most modern hardware can di-
rectly exploit the benefits provided by such approaches. It
is worth noting that some dedicated DL accelerators, such
as Edge TPUs [54], mostly operate on such quantized in-
teger arithmetic, avoiding the need for performing floating-
point operations as much as possible. Another approach
that also focuses on removing redundant complexity from
DL models is neural network pruning [1, 14, 56]. These
approaches focus on removing unnecessary connections be-
tween neurons and/or whole neurons. Given that DL mod-
els are over-parametrized, such approaches can significantly
reduce their size with only a very small impact on their ac-
curacy. However, it is worth noting that in contrast with
quantization that can be often very easily implemented in
practice, since it is often supported by the underlying hard-

ware, pruning can sometimes lead to architectures that do
not always bring the anticipated speedup.

The aforementioned approaches allow us to either com-
press an already-trained network architecture or train it
in a way that will eventually end up with fewer parame-
ters/consume fewer resources. However, these approaches
ignore the characteristics of modern DL accelerators, for
which architectures with a similar number of parameters
might perform differently. This has also fueled the interest
in developing a lightweight architecture that will maximize
the accuracy that we can obtain for the task at hand while
being as much as possible hardware-friendly. Indeed, archi-
tectures such as MobileNets [15, 36], ShuffleNets [58] and
EfficientNets [41] are predominately used when there is the
need for fast, yet effective networks. Other approaches also
focused on developing layers that can speed up the opera-
tion of a network, e.g., efficient pooling layers [31, 35]. An-
other line of work employs models with adaptive inference
graphs [30, 49, 59], which allows for accelerating inference
for easier samples and/or when not enough resources are
available, reducing the footprint of DL models.

Usually compressing DL architectures and/or using such
lightweight architecture negatively impacts the accuracy of
the network (to a smaller or larger degree). Motivated by
this behavior and exploiting the nature of DL models that
tends to be heavily over-parameterized several methodolo-
gies for distilling/transferring the knowledge from a large
and powerful network into a smaller and more lightweight
one have been developed [13, 32, 57]. These methods ex-
ploit the additional information that can be extracted from
the teacher model to improve the training process of the stu-
dent, often leading to significant improvements in the accu-
racy of the student models.

Finally, apart from the aforementioned generic methods
for accelerating DL models, a small number of methods tai-
lored to specific applications have also been developed. For
example, in [28] the problem of object detection is tack-
led as a detection and tracking problem, where a tracker
is employed to accelerate re-detection, which can be very
efficient when there are only small changes between suc-
cessive frames. On the other hand, in [33] active perception
approaches have been proposed which allows for training
models that need to be less invariant to various poses, since
the most appropriate one can be acquired, which in turn al-
lows for faster inference in most situations.

3 Deployment Challenges

In this Section we provide experimental measurements
to benchmark well-known architectures that can be used for
various deep video stream analysis tasks. Since most of
the recent DL approaches share common backbones, e.g.,
residual networks [12], that are then fine-tuned for the task



Table 1. Experimental evaluation and comparison between different architectures, models and reso-
lutions that can be used for analyzing video streams on commodity GPUs. Memory footprint (MB)
and energy footprint (Joules) refer to the amortized value per sample. The maximum batch size that
can fit in the memory of GPU is also reported (Max. Batch).

Architecture Memory Footprint Energy Footprint NVIDIA 3080 Ti NVIDIA 2080 Ti

(MB) (J) Max. Batch FPS Max. Batch FPS

Input Resolution: 360× 640

ResNet-18 209.2 0.5 49 566.4 49 421.0
ResNet-50 790.4 1.9 13 183.1 12 167.7
ResNet-101 1196.2 3.2 8 110.7 8 102.5
MobiletNet v2 483.7 1.1 20 382.9 20 379.5
ShuffleNet v2 94.15 0.2 106 1213.7 94 1096.3

Input Resolution: 720× 1280

ResNet-18 805.9 1.7 12 181.7 12 122.0
ResNet-50 3079.8 7.8 3 54.7 3 41.9
ResNet-101 4583.3 12.4 2 31.7 2 25.5
MobiletNet v2 1917.9 4.3 5 126.6 5 92.0
ShuffleNet v2 373.5 0.7 27 357.9 24 272.6

Input Resolution: 1080× 1920

ResNet-18 1783.7 4.2 5 69.6 5 51.4
ResNet-50 6918.6 23.1 1 19.5 1 14.9
MobiletNet v2 4302.9 10.5 2 44.4 2 33.9
ShuffleNet v2 840.76 1.7 12 147.8 10 120.4

at hand, this evaluation focuses on these backbones, which
typically consume the largest share of resources. The exper-
imental results are reported in Table 1. We have used two
widely available GPUs that can be used for accelerating DL
models, i.e., an NVIDIA 2080 Ti (11GB of VRAM, 250W
TDP) and an NVIDIA RTX-3080 Ti (12GB of VRAM,
350W TDP). We are reporting the memory footprint re-
quired for inference of one frame, which provides an indica-
tion of the memory utilization of each model. Furthermore,
we also report the number of frames that can be processed
in parallel in one second, as well as the maximum number
of frames that can fit in the VRAM of each card. These two-
number provide an indication of the capacity of each card
to handle parallel video streams. Moreover, given the in-
creasing importance of energy consumption in DL, we also
report average energy consumption per card (whole pack-
age, as reported by nvidia-smi) for processing one in-
put frame. The aim of this evaluation was to estimate the
efficiency of different networks on different architectures.
The memory footprint (reported in MB) and energy foot-
print (reported in Joules) are calculated as the amortized
value after setting the batch size to the maximum that can
be supported (Max. Batch). These values were measured
using an NVIDIA 3080 Ti GPU. Finally, it should be noted

that memory and energy footprint might differ from the ac-
tual footprint measured at the device due to measurements
limitations (e.g., ±5 W accuracy for energy measurements).

Several interesting conclusions can be drawn from the
results reported in Table 1. First, note that the employed
architecture can have a profound impact on energy con-
sumption (a ResNet-101 requires almost 16 times more en-
ergy compared to a ShuffleNet). The same is also true for
the input resolution. Indeed, energy increases about 8-10
times as we increase the input resolution from 360 × 640
to 1080 × 1920. At the same time, note that memory foot-
print is becoming a limiting factor as the input resolution is
increasing, highlighting a bottleneck point of modern GPU
accelerators. Indeed, for a relatively small resolution we
can process a significant number of frames, e.g., assuming 5
FPS per input video stream, we can process about 10 video
streams using a ResNet-50 at 720p. However, when scal-
ing to 1080p this number drops to just 3-4 video steams,
while the GPU memory is enough only for performing in-
ference for one frame. Going from a previous generation
card (NVIDIA 2080 Ti) into a more recent one (3080 Ti)
increases the inference speed, but memory restrictions still
remain a significant limitation when there is the need for
high-resolution processing.



4 Conclusions

In this paper we provided a brief overview of the current
state-of-the-art in DL tools that can be used for deep
video stream information analysis and retrieval, discussing
critical limitations, as well as modern methods and tools
for overcoming them. Furthermore, we also include
experimental results discussing deployment challenges,
ranging from speed to energy consumption, demonstrating
the capabilities of readily available commodity hardware in
processing video streams for selected DL models.
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